All Integration Formulas pdf
Integration
UPI ID:- achalup41-1@oksbi
Contact Email ID:- achalup41@gmail.com
Integration of the composite function
\(\int x^{n}dx=\frac{x^{n+1}}{n+1}+C, n\neq 1\)
\(\int \frac{1}{x}dx=log|x|+C\)
\(\int e^{x}dx=e^{x}+C \)
'C' is the Integration constant.
Integration formula of the Trigonometric function
\(\int sin x\hspace{2mm} dx=-cos x+C\)
\(\int cos x\hspace{2mm} dx=sin x+C\)
\(\int sec^{2}x\hspace{2mm} dx =tan x+C\)
\(\int cosec^{2}x\hspace{2mm} dx=-cotx+C\)
\(\int secx \hspace{1mm} tanx\hspace{2mm}dx = secx+C\)
\(\int cosecx \hspace{1mm} cotx\hspace{2mm}dx = -cosecx+C\)
\(\int tanx \hspace{2mm}dx = log(secx)+C\)
\(\int tanx \space dx = -log(cosx)+C\)
\(\int cotx \hspace{2mm}dx = log(sinx)+C\)
\(\int cotx \space dx = -log(cosecx)+C\)
\(\int cosecx \hspace{2mm}dx = log(cosecx - cotx)+C\)
\(\int cosecx \hspace{2mm}dx = log(tan\frac{x}{2})+C\)
\(\int secx \hspace{2mm}dx = log(secx+tanx)+C\)
\(\int secx \hspace{2mm}dx = log\hspace{1mm}tan\left ( \frac{π}{4}+\frac{x}{2} \right )+C\)
'C' is the Integration constant.
Integration into Inverse Trigonometric Functions
\(\int \frac{1}{\sqrt{1-x^{2}}}\hspace{2mm}dx=sin^{-1}x+C\)
\(\int -\frac{1}{\sqrt{1-x^{2}}}\hspace{2mm}dx=cos^{-1}x+C\)
\(\int \frac{1}{1+x^{2}}\hspace{2mm}dx=tan^{-1}x+C\)
\(\int -\frac{1}{1+x^{2}}\hspace{2mm}dx=cot^{-1}x+C\)
\(\int \frac{1}{x\sqrt{x^{2}-1}}\hspace{2mm}dx=sec^{-1}x+C \)
\(\int -\frac{1}{x\sqrt{x^{2}-1}}\hspace{2mm}dx=-cosec^{-1}x+C\)
\(\int \frac{1}{a^{2}+x^{2}}dx=\frac{1}{a}tan^{-1}\left ( \frac{x}{a} \right )+C\)
\(\int \frac{1}{\sqrt{a^{2}-x^{2}}}dx=sin^{-1}\left ( \frac{x}{a} \right )+C\)
\(\int \frac{1}{x \sqrt{x^{2}-a^{2}}}dx=\frac{1}{a} sec^{-1}\left ( \frac{x}{a} \right )+C \)
'C' is the Integration constant.
Integration by substitution
\(\int\frac{1}{ax+b}dx=\frac{1}{a}log(ax+b)+C\)
\(\int e^{ax+b}dx=\frac{1}{a}e^{ax+b}+C\)
\(\int e^{ax+b}dx=\frac{1}{a}\frac{e^{ax+b}}{log_ee}+C\)
\(\int sin(ax+b)dx=-\frac{1}{a}cos(ax+b)+C\)
\(\int cos(ax+b)dx= \frac{1}{a}sin(ax+b)+C\)
\(\int sec^{2}(ax+b)dx= \frac{1}{a}tan(ax+b)+C\)
\(\int cosec^{2}(ax+b)dx= -\frac{1}{a}cot(ax+b)+C\)
'C' is the Integration constant.
Few Special integrations
\(\int\frac{1}{\sqrt{x^2+a^2}}dx =log(x+\sqrt{x^{2}+a^{2}})+C \)
\(\int\frac{1}{\sqrt{x^2-a^2}}dx =log(x+\sqrt{x^{2}-a^{2}})+C \)
\(\int\frac{1}{\sqrt{1+x^2}}dx =log(x+\sqrt{1+x^{2}})+C \)
\(\int\frac{1}{\sqrt{x^2-1}}dx =log(x+\sqrt{x^{2}-1})+C \)
\(\int\frac{1}{x^{2}-a^{2}}dx=\frac{1}{2a}log\left|\frac{x-a}{x+a}\right |+C, when\hspace{1mm} x> a \)
\(\int\frac{1}{a^{2}-x^{2}}dx=\frac{1}{2a}log\left|\frac{a+x}{a-x}\right |+C, when\hspace{1mm} x < a \)
\(\int a^{x}\hspace{2mm}dx=\frac{a^{x}}{loga}+C\)
'C' is the Integration constant.
Integration of two functions or Integration by parts
\(\int e^{ax}cos \hspace{1mm}bx \hspace{2mm}dx= \frac{e^{ax}}{a^{2}+b^{2}}(a\hspace{1mm}cos\hspace{1mm}bx+b\hspace{1mm}sin\hspace{1mm}bx)+C\)
\(\int e^{ax}cos \hspace{1mm}bx \hspace{2mm}dx= \frac{e^{ax}}{\sqrt{a^{2}+b^{2}}}cos \left[ bx - tan^{-1}(\frac{b}{a}) \right ]+C\)
\(\int e^{ax}sin \hspace{1mm}bx \hspace{2mm}dx= \frac{e^{ax}}{a^{2}+b^{2}}(a\hspace{1mm}sin\hspace{1mm}bx-b\hspace{1mm}cos\hspace{1mm}bx)+C\)
\(\int e^{ax}sin \hspace{1mm}bx \hspace{2mm}dx= \frac{e^{ax}}{\sqrt{a^{2}+b^{2}}}sin \left[ bx - tan^{-1}(\frac{b}{a}) \right ]+C\)
'C' is the Integration constant.
How to choose the first and second functions in Integration by parts
you can choose the first and second functions through a simple trick. Remember a word 'ILATE'
I → Inverse function (e.g.- sin-1 x, cos-1 x)
L → Logarithmic function (e.g.- log x)
A → Algebraic function (e.g.- x3, x4)
T → Trigonometric function (e.g.- sin x, cos x)
E → Exponatial function (e.g.- e2)
e.g.- \(\int x^2 \space logx \space dx\)
x2 → A → f2(x)
log x → L → f1(x)
\(=\int logx \space x^2 \space dx\)
\(=log x \int x^2 dx - \left [ \int \left ( \frac {d}{dx} log x \int x^2 \right ) dx \right ]\)
\(=logx \int x^2 dx - \left [ \int \frac {1}{x} \frac {x^3}{3} dx \right ]\)
\(=logx \frac {x^3}{3} - \left [ \int \frac {x^2}{3} dx \right ]\)
\(=\frac {x^3}{3} logx - \frac {x^3}{9}+c\)
Definite Integration
Properties of Definite Integrals
👉\(\int_{a}^{b}f(x)dx = \int_{a}^{b}f(t)dt+C\)
👉\(\int_{a}^{b}f(x)dx = -\int_{b}^{a}f(x)dx, when\hspace{1mm}a > b\)
👉\(\int_{0}^{a}f(x)dx = \int_{0}^{a}f(a-x)dx+C\)
👉 If \(\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx\) then,
⋆ \(\int_{0}^{b} f(x) dx = \int_{0}^{b} f(b-x) dx\)
⋆ \(\int_{-a}^{a} f(x) dx = \int_{-a}^{a} f(-x) dx\)
👉 If f( a + b - x) = f(x) then,
\(\int_{a}^{b}x f(x) dx = \frac {a+b}{2}\int_{a}^{b} f(x) dx\)
'C' is the Integration constant.
Definite integration Formula
\(\int_{0}^{\frac {π}{2}} log(sinx) dx = - \frac {π}{2} log 2 \)
\(\int_{0}^{\frac {π}{2}} log(cosx) dx = - \frac {π}{2} log 2 \)
\(\int_{0}^{\frac {π}{2}} log(secx) dx = \frac {π}{2} log 2 \)
\(\int_{0}^{\frac {π}{2}} log(cosecx) dx = \frac {π}{2} log 2 \)
\(\int_{0}^{\frac {π}{2}} log(tanx) dx = 0\)
\(\int_{0}^{\frac {π}{2}} log(cotx) dx = 0\)
\(\int_{a}^{b} \frac {f(x)}{f(x)+f(a+b-x)}dx = \frac {b-a}{2}\)
\(\int_{a}^{b} \frac {1}{a^2cos^2x+b^2sin^2x}dx = \frac {π}{2ab}\)
Leibnitz Theorem
If f (x) = \(\int_{g(x)}^{h(x)} f (t) dt \) then,
\(\frac {d}{dx} f (x) = f \left ( h (x) \right ) \frac {d}{dx} h (x) - f \left ( g(x) \right ) \frac {d}{dx} g (x)\)
Don't forget to share with friends and support🙏
Average Definition and formulas
Average Questions with solution
Inverse Trigonometric function formulas pdf