All Inverse trigonometry functions and formulas or Identity list | pdf

 Inverse trigonometry functions and formulas

Inverse trigonometry

This is for all competitive exams like SSC, Railway, Bank, TGT, PGT and other competitive exams and academic exams like intermediate or High school exam CBSE, ICSE (class 10, 11, 12) or State board.

UPI ID:- achalup41-1@oksbi

Negative Property

sin-1 (-x) = -sin-1 x

cos-1 (-x) = π - cos-1 x

tan-1 (-x) = -tan-1 x

cot-1 (-x) = π - cot-1 x

sec-1 (-x) = π - sec-1 x

cosec-1 (-x) = -cosec-1 x

Complementary Property

sin-1 x + cos-1 x = \(\frac {π}{2}\)

tan-1 x + cot-1 x = \(\frac {π}{2}\)

sec-1 x + cosec-1 x = \(\frac {π}{2}\)

Properties of Inverse Circular function

sin-1 x = cosec-1 \(\frac {1}{x}\)

cosec-1 x = sin-1 \(\frac {1}{x}\)

cos-1 x = sec-1 \(\frac {1}{x}\)

sec-1 x = cos-1 \(\frac {1}{x}\)

tan-1 x = cot-1 \(\frac {1}{x}\)

cot-1 x = tan-1 \(\frac {1}{x}\)

Self Adjusting Property

sin-1 (sin x) = x   :   x ∈ \(\left [ \frac {-π}{2}, \frac {π}{2} \right ] \)

cos-1 (cos x) = x   :   x ∈ \(\left [ 0, π \right ] \)

tan-1 (tan x) = x   :   x ∈ \(\left ( \frac {-π}{2}, \frac {π}{2} \right ) \)

cot-1 (cot x) = x   :   x ∈ \( \left ( 0, π \right ) \)

sec-1 (sec x) = x   :   x ∈ [0, π] - \(  \left\{ \frac {π}{2} \right\} \)

cosec-1 (cosec x) = x   :   x ∈ \(\left [ \frac {-π}{2}, \frac {π}{2} \right ] - \left\{0\right\} \)

sin (sin-1 x) = x   :   x ∈ \(\left [ -1, 1 \right ] \)

cos (cos-1 x) = x   :   x ∈ \(\left [ -1, 1 \right ] \)

tan (tan-1 x) = x   :   x ∈ R

cot (cot-1 x) = x   :   x ∈ R

sec (sec-1 x) = x   :   x ∈ R - (-1, 1)

cosec (cosec-1 x) = x   :   x ∈ R - (-1, 1)

Addition and Subtraction formulas

sin-1 x + sin-1 y = sin-1 \(x\sqrt {1 - y^2} + y\sqrt {1 - x^2}\);  x ≥ 0, y ≥ 0 & x2 + y2 ≤ 1

sin-1 x + sin-1 y = π - sin-1 \(x\sqrt {1 - y^2} + y\sqrt {1 - x^2}\);  x ≥ 0, y ≥ 0 & x2 + y2 ≥ 1

sin-1 x - sin-1 y = sin-1 \(x\sqrt {1 - y^2} - y\sqrt {1 - x^2}\);  x,y ∈ [0, 1]

cos-1 x + cos-1 y = cos-1 \(xy - \sqrt {1 - x^2}\sqrt {1 - y^2}\);  x,y ∈ [0, 1]

cos-1 x - cos-1 y = cos-1 \(xy + \sqrt {1 - x^2}\sqrt {1 - y^2}\);  0 ≤ x < y ≤ 1

cos-1 x - cos-1 y = - cos-1 \(xy + \sqrt {1 - x^2}\sqrt {1 - y^2}\);  0 ≤ y < x ≤ 1

tan-1 x + tan-1 y = tan-1 \(\frac{x+y}{1 - xy}\);  x,y > 0 & xy < 1

tan-1 x + tan-1 y = π + tan-1 \(\frac{x+y}{1 - xy}\);  x,y > 0 & xy > 1

tan-1 x + tan-1 y = π/2 if x,y > 0 & xy = 1

tan-1 x + tan-1 y = -π/2 if x,y < 0 & xy = 1

tan-1 x - tan-1 y = tan-1 \(\frac{x-y}{1 + xy}\);  x,y ≥ 0 & xy > -1

2tan-1 x = sin-1 \(\frac {2x}{1+x^2}\);  -1 ≤ x ≤ 1

2tan-1 x = tan-1 \(\frac {2x}{1-x^2}\);   -1 < x < 1

2tan-1 x = cos-1 \(\frac {1-x^2}{1+x^2}\);   x ≥ 0

2sin-1 x = sin-1 \(2x\sqrt {1 - x^2}\)

3sin-1 x = sin-1 (3x - 4x3 )

2cos-1 x = cos-1 (2x2 - 1)

3cos-1 x = cos-1 (4x3 - 3x)

3tan-1 x = tan-1 \( \left ( \frac {3x - x^3}{1 - 3x^2} \right ) \)

Inverse Trigonometric Functions Series or Progressions

Taylor's Expansions

\(sin^{-1}x = x + \frac{x^3}{3!} + \frac{9x^5}{5!} + \frac{45x^7}{7!}+ ......\)

\(cos^{-1}x = \frac{π}{2}- \left( x + \frac{x^3}{3!} + \frac{9x^5}{5!} + \frac{45x^7}{7!}+ ......\right) \)

\(tan^{-1}x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7}+ ......\)

\(sec^{-1}x = cos^{-1}\frac{1}{x}\)

   \( = \frac{π}{2}- \left( \frac{1}{x} + \frac{1}{x^33!} + \frac{9}{x^55!} + \frac{45}{x^77!}+ ......\right) \)

\(cosec^{-1}x = \frac{1}{x} + \frac{1}{x^33!} + \frac{9}{x^55!} + \frac{45}{x^77!}+ ......\)

\(cot^{-1}x = \frac{π}{2}- \left( x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7}+ ......\right)\)

Download pdf

Don't forget to share with friends and support🙏

Number system || Free pdf

Number system Questions

HCF and LCM

HCF and LCM Questions

Average Definition and formulas

Average Questions with solution

Inverse Trigonometric function formulas pdf

All formulas of differentiation pdf

Trigonometry all formula and function list pdf