All Inverse trigonometry functions and formulas or Identity list | pdf
Inverse trigonometry functions and formulas
This is for all competitive exams like SSC, Railway, Bank, TGT, PGT and other competitive exams and academic exams like intermediate or High school exam CBSE, ICSE (class 10, 11, 12) or State board.
UPI ID:- achalup41-1@oksbi
Negative Property
sin-1 (-x) = -sin-1 x
cos-1 (-x) = π - cos-1 x
tan-1 (-x) = -tan-1 x
cot-1 (-x) = π - cot-1 x
sec-1 (-x) = π - sec-1 x
cosec-1 (-x) = -cosec-1 x
Complementary Property
sin-1 x + cos-1 x = \(\frac {π}{2}\)
tan-1 x + cot-1 x = \(\frac {π}{2}\)
sec-1 x + cosec-1 x = \(\frac {π}{2}\)
Properties of Inverse Circular function
sin-1 x = cosec-1 \(\frac {1}{x}\)
cosec-1 x = sin-1 \(\frac {1}{x}\)
cos-1 x = sec-1 \(\frac {1}{x}\)
sec-1 x = cos-1 \(\frac {1}{x}\)
tan-1 x = cot-1 \(\frac {1}{x}\)
cot-1 x = tan-1 \(\frac {1}{x}\)
Self Adjusting Property
sin-1 (sin x) = x : x ∈ \(\left [ \frac {-π}{2}, \frac {π}{2} \right ] \)
cos-1 (cos x) = x : x ∈ \(\left [ 0, π \right ] \)
tan-1 (tan x) = x : x ∈ \(\left ( \frac {-π}{2}, \frac {π}{2} \right ) \)
cot-1 (cot x) = x : x ∈ \( \left ( 0, π \right ) \)
sec-1 (sec x) = x : x ∈ [0, π] - \( \left\{ \frac {π}{2} \right\} \)
cosec-1 (cosec x) = x : x ∈ \(\left [ \frac {-π}{2}, \frac {π}{2} \right ] - \left\{0\right\} \)
sin (sin-1 x) = x : x ∈ \(\left [ -1, 1 \right ] \)
cos (cos-1 x) = x : x ∈ \(\left [ -1, 1 \right ] \)
tan (tan-1 x) = x : x ∈ R
cot (cot-1 x) = x : x ∈ R
sec (sec-1 x) = x : x ∈ R - (-1, 1)
cosec (cosec-1 x) = x : x ∈ R - (-1, 1)
Addition and Subtraction formulas
sin-1 x + sin-1 y = sin-1 \(x\sqrt {1 - y^2} + y\sqrt {1 - x^2}\); x ≥ 0, y ≥ 0 & x2 + y2 ≤ 1
sin-1 x + sin-1 y = π - sin-1 \(x\sqrt {1 - y^2} + y\sqrt {1 - x^2}\); x ≥ 0, y ≥ 0 & x2 + y2 ≥ 1
sin-1 x - sin-1 y = sin-1 \(x\sqrt {1 - y^2} - y\sqrt {1 - x^2}\); x,y ∈ [0, 1]
cos-1 x + cos-1 y = cos-1 \(xy - \sqrt {1 - x^2}\sqrt {1 - y^2}\); x,y ∈ [0, 1]
cos-1 x - cos-1 y = cos-1 \(xy + \sqrt {1 - x^2}\sqrt {1 - y^2}\); 0 ≤ x < y ≤ 1
cos-1 x - cos-1 y = - cos-1 \(xy + \sqrt {1 - x^2}\sqrt {1 - y^2}\); 0 ≤ y < x ≤ 1
tan-1 x + tan-1 y = tan-1 \(\frac{x+y}{1 - xy}\); x,y > 0 & xy < 1
tan-1 x + tan-1 y = π + tan-1 \(\frac{x+y}{1 - xy}\); x,y > 0 & xy > 1
tan-1 x + tan-1 y = π/2 if x,y > 0 & xy = 1
tan-1 x + tan-1 y = -π/2 if x,y < 0 & xy = 1
tan-1 x - tan-1 y = tan-1 \(\frac{x-y}{1 + xy}\); x,y ≥ 0 & xy > -1
2tan-1 x = sin-1 \(\frac {2x}{1+x^2}\); -1 ≤ x ≤ 1
2tan-1 x = tan-1 \(\frac {2x}{1-x^2}\); -1 < x < 1
2tan-1 x = cos-1 \(\frac {1-x^2}{1+x^2}\); x ≥ 0
2sin-1 x = sin-1 \(2x\sqrt {1 - x^2}\)
3sin-1 x = sin-1 (3x - 4x3 )
2cos-1 x = cos-1 (2x2 - 1)
3cos-1 x = cos-1 (4x3 - 3x)
3tan-1 x = tan-1 \( \left ( \frac {3x - x^3}{1 - 3x^2} \right ) \)
Inverse Trigonometric Functions Series or Progressions
Taylor's Expansions
\(sin^{-1}x = x + \frac{x^3}{3!} + \frac{9x^5}{5!} + \frac{45x^7}{7!}+ ......\)
\(cos^{-1}x = \frac{π}{2}- \left( x + \frac{x^3}{3!} + \frac{9x^5}{5!} + \frac{45x^7}{7!}+ ......\right) \)
\(tan^{-1}x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7}+ ......\)
\(sec^{-1}x = cos^{-1}\frac{1}{x}\)
\( = \frac{π}{2}- \left( \frac{1}{x} + \frac{1}{x^33!} + \frac{9}{x^55!} + \frac{45}{x^77!}+ ......\right) \)
\(cosec^{-1}x = \frac{1}{x} + \frac{1}{x^33!} + \frac{9}{x^55!} + \frac{45}{x^77!}+ ......\)
\(cot^{-1}x = \frac{π}{2}- \left( x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7}+ ......\right)\)
Don't forget to share with friends and support🙏
Average Definition and formulas
Average Questions with solution
Inverse Trigonometric function formulas pdf
Post a Comment
Please do not enter any site link in the comment box 🚫.